
Python Web Channel
Release 1.9

Cihan Uyanik

Jan 02, 2024

CONTENTS:

1 Type-Script Generator 3

2 Controller Utilities 5

Python Module Index 39

Index 41

i

ii

Python Web Channel , Release 1.9

pywebchannel is a tool that automatically generates TypeScript files for QWebChannel Python local backend. It allows
you to create a stunning UI for your Python project using web technologies such as HTML, CSS, and JavaScript.

With pywebchannel, you can:

• Write your backend logic in Python and use Qt (PySide6) for communication.

• Use QWebChannel to communicate with the web frontend and expose your Python objects and methods.

• Write your frontend UI in any web framework of your choice, such as vanilla JS, React, Solid, Vue, etc.

• Enjoy the benefits of TypeScript, such as type safety, code completion, and error detection.

• Save time and effort by automatically generating TypeScript interfaces from your Python code.

Thank you for your interest in pywebchannel. I hope you enjoy using it as much as I enjoyed creating it.

CONTENTS: 1

Python Web Channel , Release 1.9

2 CONTENTS:

CHAPTER

ONE

TYPE-SCRIPT GENERATOR

The TypeScript Generator part of this library has a file watcher that translates Python code to TypeScript interfaces.
This enables safe and easy communication between your Python backend and your desired frontend (vanilla JS, React,
Solid, Vue, etc.). To use the TypeScript Generator, run the ts_generator.py script and specify the folders that
contain the Python files you would like watch for auto-instant conversion.

3

Python Web Channel , Release 1.9

4 Chapter 1. Type-Script Generator

CHAPTER

TWO

CONTROLLER UTILITIES

pywebchannel provides helpful classes, functions and decorators to generate proper controller classes which can be
exposed to a UI written by using web technologies. All given types are self documented and easy to follow.

2.1 What is Python Web Channel

2.1.1 Python Web Channel

pywebchannel is a tool that automatically generates TypeScript files for QWebChannel Python local backend. It allows
you to create a stunning UI for your Python project using web technologies such as HTML, CSS, and JavaScript.

With pywebchannel, you can:

• Write your backend logic in Python and use Qt (PySide6) for communication.

• Use QWebChannel to communicate with the web frontend and expose your Python objects and methods.

• Write your frontend UI in any web framework of your choice, such as vanilla JS, React, Solid, Vue, etc.

• Enjoy the benefits of TypeScript, such as type safety, code completion, and error detection.

• Save time and effort by automatically generating TypeScript interfaces from your Python code.

2.1.2 Type-Script Generator

The TypeScript Generator part of this library has a file watcher that translates Python code to TypeScript interfaces.
This enables safe and easy communication between your Python backend and your desired frontend (vanilla JS, React,
Solid, Vue, etc.). To use the TypeScript Generator, run the ts_generator.py script and specify the folders that
contain the Python files you would like watch for auto-instant conversion.

2.1.3 Controller Utilities

pywebchannel provides helpful classes, functions and decorators to generate proper controller classes which can be
exposed to a UI written by using web technologies. All given types are self documented and easy to follow.

Documentation & API

5

https://pywebchannel.readthedocs.io

Python Web Channel , Release 1.9

2.2 Why do you need this?

You want to create a professional UI with modern web technologies and python. But you face many challenges with
the existing libraries. Some of them rely on window manipulation, which is not compatible with most web frameworks.
Some of them use RestAPI libraries, which add a lot of overhead, complexity and state management issues. Some of
them use WebSockets only for function calls, without any real-time synchronization features.

Among these, QWebChannel seems to be the best option, with a lightweight WebSocket protocol and features like
synchronization, function calls and property access. However, it also has its own limitations, mainly related to the
Qt type system. You cannot use it with non-supported Qt types, without doing complex conversions, manual type
adjustments and boiler-plate code, just to satisfy Qt. This makes development difficult and error-prone. And even if
you manage to do that on the python side, you still have to deal with a frontend development cycle, with no type-hinting,
no auto-completion, no compile time validation etc., which is a nightmare in javascript environment.

But don’t worry, pywebchannel library is here to solve your problem .

2.2.1 Let’s investigate the problems together

Suppose you want to build a todo application with python and web technologies. You will require some function-
ality to store the data (list of todos), modify it (add, remove, update), and inform the frontend about the changes.

2.2.2 Signals

You want to create a notification mechanism to the frontend, when you add a new todo item. You can use QtCore.
Signals for that.

Inside your controller class
new_todo_added = QtCore.Signal()

This signal can be emitted in your python code, after adding the item to your list. And your frontend will receive it, if
it is connected to new_todo_added signal. But this signal does not carry any information about the new item. How
can you send some data with it?

Inside your controller class
new_todo_added = QtCore.Signal(str)

This signal can be emitted with a string parameter, and your frontend will receive it. For instance, if your todos have an
id field of type str, you can emit it. str is a supported type in Qt, so it works. But what if you want to send a Todo
object, which is a custom object of yours that inherits from pydantic.BaseModel?

Inside your controller class
new_todo_added = QtCore.Signal(Todo)

This will cause an exception like this:

TypeError: Signal must be bound to a QObject, not 'Todo'

This is because, Todo is not a supported type in Qt. You can use QtCore.QObject as a base class for your Todo, to
avoid this error. But then, you will face another problem, which is not even caught by exception mechanism. You will
get an empty object in your frontend, instead of a Todo object. This is because Qt does not know how to serialize
your Todo object to a valid json object. The simplest way to make it work is to use dict instead of Todo object.

6 Chapter 2. Controller Utilities

Python Web Channel , Release 1.9

new_todo_added = QtCore.Signal(dict)

But then, you will lose all the type information, and need to do type conversions. I don’t even need to mention about
lists. You need to take care of all these details, and keep your frontend and backend in sync. This is too much
hassle. . .

You can use pywebchannel library, and define your signal like this:

with a list of types:

from pywebchannel import Signal

Inside your controller class
new_todo_added = Signal([Todo])

or even better, with argument dictionary in the form of {arg1_name: arg1_type, ...}:

from pywebchannel import Signal

Inside your controller class
new_todo_added = Signal({'new_todo': Todo})

This will ensure that Qt is happy, and your frontend and backend are in sync.

And this is just the tip of the iceberg .

2.2.3 Properties

A property is a way to access and modify an internal (usually private) variable, with a getter and setter, in your class.
It is a common feature in object-oriented programming. The benefits of using properties in Qt or PySide are that, you
can create a signal for a property, so that any listeners or connected objects will be updated when the property changes.

For example, you have a property that keeps track of the number of todos. I know it is silly, but it is just for illustration.

Inside your controller class
todoCount = QtCore.Property(int)

This is how you want to write your code. And also, you want to have a signal, that is triggered when the value of
todoCount changes, you can call that signal something like todoCountChanged.

But that is not possible. You have to define a getter and setter for your property, and also a signal for it.

Inside your controller class

def __init__(self):
You need a back variable to hold the value of your property
self._todoCount = 0

You need a signal to notify
todoCountChanged = QtCore.Signal(int, arguments=['todoCount'])

You need a getter
def get_todoCount(self) -> int:

(continues on next page)

2.2. Why do you need this? 7

Python Web Channel , Release 1.9

(continued from previous page)

return self._todoCount

You need a setter
def set_todoCount(self, value: int):

if self._todoCount != value:
self._todoCount = value
self.todoCountChanged.emit(value)

And finally, you can define your property
todoCount = QtCore.Property(int, fget=get_todoCount, fset=set_todoCount,␣
→˓notify=todoCountChanged)

What the f. . . is this?

I don’t even want to talk about the type conversions mentioned in Signals section. You have to do all these things for
Properties too.

Instead of this sh. . . , you can use pywebchannel library, and define your property like this:

from pywebchannel import Property

Inside your controller class
todoCount = Property(int, init_val=0)

And that’s it. This will:

• ensure that Qt is happy, and your frontend and backend are in sync.

• create a private variable called _todoCount to store the value of your property.

• create a getter and setter for you as exactly written above.

• create a signal called todoCountChanged

If you want to have a different implementation for your getter and setter, you can still define one or both of them, and
pass it as an argument to Property.

2.2.4 Actions

Actions are functions that you can call from your frontend. You can create an action in PySide like this:

Inside your controller class
@QtCore.Slot(str)
def sayHello(self, name: str):

Do something with todo
pass

This works, and you can call this function from your frontend. But the type issues mentioned above are still there.

Inside your controller class
@QtCore.Slot(Todo)
def addTodo(self, todo: Todo):

Do something with todo
pass

8 Chapter 2. Controller Utilities

Python Web Channel , Release 1.9

This does not work, and you will not even get an exception about that. Your function will be called with an empty
argument . Most likely your application will crash, and your frontend will not even know why.

• This is because of one of the input arguments. You have to consider all the input arguments, and make sure that
your frontend and backend are in sync.

• Return values also have the same problem, ‘type matching’ and ‘keeping’ Qt and serialization happy.

• If you want to notify the frontend about the execution result, you have to create your own signal, and emit it.

• You also have to handle exceptions as well.

You will end up with a lot of boilerplate code, which is not even related to your business logic.

Inside your controller class

Create a signal for notification
new_todo_added = QtCore.Signal(dict, arguments=['new_todo'])

Create a slot for your action
@QtCore.Slot(dict, result=dict)
def addTodo(self, todo: dict):

try:
todoObj = Todo.parse_obj(todo)

Do something with todo

self.new_todo_added.emit(todoObj.dict())

return {'success': True,
'error': None,
'data': todoObj.dict()}

except ParseError as e:
return {'success': False,

'error': f"Invalid todo object: {e}",
'data': None}

except Exception as e:
return {'success': False,

'error': f"Unknown error: {e}",
'data': None}

This is just a simple example, but you can imagine how it will look like in a real application. And even if you handle
this by yourself, you will have a frontend development cycle, with no type-hinting, no auto-completion again.

You can use pywebchannel library, and create your action like this:

from pywebchannel import Action, Notify

Inside your controller class
@Action(Notify([Todo]))
def addTodo(self, todo: Todo):

Do something with todo
return todo

2.2. Why do you need this? 9

Python Web Channel , Release 1.9

All the problems mentioned above are solved by pywebchannel library’s @Action decorator. You can focus on your
actual project .

2.2.5 Okay we almost there

Imagine that you have created your Signals, Propertys and Slots etc, in your controller class. But your frontend still
does not recognize your backend types. You have to define all the types in your frontend typescript definition files, and
keep them updated with your backend types. This is a nightmare, and you will have many bugs, and emotional-damages
.

Fortunately pywebchannel library has a solution for this. You can use pywebchannel library’s ts_generator tool.
This is a simple script that can monitor your python files, and generate typescript definition files automatically. When
you run it in a separate terminal, it will do its magic, and you will have a wonderful development experience .

To use this tool, you have to inherit your controller class from pywebchannel.Controller class, and use
pywebchannel library’s Signal, Property and Action instead of the ones provided by Qt. Also, you have to use
pydantic for your model classes, which is the usual case for model classes in any project. That’s it.

Please check the API documentation and example projects for more details.

2.3 Installation

You can simply install the package using pip:

pip install pywebchannel

All requirements will be installed automatically.

Requirements:

• PySide6 - Qt for Python

• pydantic - Model definition and validation

• colorama - Colored terminal output

2.4 Usage Setup :

2.4.1 Definition 1: Business Logic / A python project / Backend

Whatever you call for this step, it is just a regular Qt (PySide6) powered python project, which can take the advantage
of full power of python with no limitation. To simplify the discussion here, it uses web socket(s) for real time commu-
nication and exposes objects through web socket(s). The properties, methods, signal/notifiers immediately
become available to the UI with complete signature and type checking through type-script interfaces. Don’t worry
about complicated processes for managing sockets, it is not your responsibility. This is handled automatically, you can
simply focus on your project.

10 Chapter 2. Controller Utilities

https://github.com/cihanuyanik/pywebchannel/tree/main/example
https://doc.qt.io/qtforpython-6/
https://docs.pydantic.dev/latest/
https://pypi.org/project/colorama/

Python Web Channel , Release 1.9

2.4.2 Definition 2: User Interface / A web project / Frontend

Similarly, it is just a regular web project, which exploit the available modern UI tools. There is no limitation such
as magically manipulated window interfaces or any complicated middle-ware translator which limits the functionality
web library of yours.

2.4.3 Step 1: Create a meaningful directory structure.

It is completely up to you. But having a meaningful directory structure could make things simpler. For that purpose
suggested way is to create a root directory with your AppName and two folders under the root directory, backend and
frontend. As names suggest, they will be holding your python project as backend and UI project as frontend.

AppName
backend
...

frontend
...

README.md
LICENSE
.gitignore

Optinal virtual environment: If you prefer using virtual environment for your python projects (which is the
suggested way for any python project), create one virtual environment, and use it under your backend folder.

2.4.4 Step 2: Install the library pywebchannel

pip install pywebchannel

2.4.5 Step 3: Create an entry point for your backend.

Add a main file with any name, i.e. main.py, inside your backend folder. The entry point will contain python
main function and will create a QApplication and run it. The responsibility of the entry point is to initiate the
WebChannelService object(s) (Yes, you read it right, it is plural, you can create more than one communication chan-
nels to your UI application, for different purposes). Addition to that main needs to create the object(s) (at least the ones
which need to be available at the beginning), and register those object(s) to the related WebChannelService.

main.py
import sys
from PySide6.QtWidgets import QApplication

from pywebchannel import WebChannelService

if __name__ == "__main__":
app = QApplication(sys.argv)

Create a WebChannelService with a desired serviceName and the parent QObject
commandTransferService = WebChannelService("Command Transfer Service", app)

(continues on next page)

2.4. Usage Setup : 11

Python Web Channel , Release 1.9

(continued from previous page)

Start the service with a desired port number, 9000 in this example
commandTransferService.start(9000)

...

...

...

app.exec()

2.4.6 Step 4: Create a python package

To hold classes which contains functionalities to be invoked from frontend. Typically, it is better to create two
packages, one for functionality classes and one for fixed structured objects, even though the second one is optional, it
is completely okay to create it, no harm will be done if it is empty. The names of these folders could be anything, but
having meaningful names would be helpful. Let’s call them controllers, models respectively.

AppName
backend
controllers
__init__.py

models
__init__.py

frontend
...

main.py
README.md
LICENSE
.gitignore

2.4.7 Step 5: Create a controller class under your controllers package.

This is going to be one of the Type you are going to expose to your UI. Let’s call it HelloWorldController. And
make this class derived from Controller, which is imported from pywebchannel. Then, in your main, create an
instance of it and register it into the WebChannelService.

controllers/HelloWorldController.py
from typing import Optional
from PySide6.QtCore import QObject
from pywebchannel import Controller

Create a Controller class
class HelloWorldController(Controller):

def __init__(self, parent: Optional[QObject] = None):
Controller name is typically the name of the class '__name__' attribute could␣

→˓be used as well
super().__init__("HelloWorldController", parent)

12 Chapter 2. Controller Utilities

Python Web Channel , Release 1.9

And in main:

main.py
import sys
from PySide6.QtWidgets import QApplication
from pywebchannel import WebChannelService
from controllers.HelloWorldController import HelloWorldController

if __name__ == "__main__":
app = QApplication(sys.argv)
commandTransferService = WebChannelService("Command Transfer Service", app)
commandTransferService.start(9000)

Create hello world controller object
hwController = HelloWorldController(app)
Register controller for the communication service
commandTransferService.registerController(hwController)

app.exec()

2.4.8 Step 6: Add functionality

Technically, at this point our object, hwController has been already exposed to the any target UI. The functionality
and properties of it is already accessible through a websocket located at port number 9000. The problem is that there is
no functionality in our controller yet. Let’s add a method into our controller, and decorate this method with a decorator
named Action imported from pywebchannel

controllers/HelloWorldController.py
from typing import Optional
from PySide6.QtCore import QObject
from pywebchannel import Controller, Action

class HelloWorldController(Controller):
def __init__(self, parent: Optional[QObject] = None):

super().__init__("HelloWorldController", parent)

Create a class method and decorate it with @Action() decorator.
Don't forget to put annotations in your arguments. It is important!
@Action()
def sayHello(self, name: str):

return f"Hello from 'HelloWorldController.sayHello' to my friend {name}"

2.4. Usage Setup : 13

Python Web Channel , Release 1.9

2.4.9 Step 7: Create UI project

Now, we can try to use this inside a web app. For simplicity, inside the frontend, just create a Vite project with
vanilla typescript template. You can create it yourself easily, or you can take it from examples folder.

2.4.10 Step 8: Establish connection

To establish connection between your backend and frontend, it is necessary to open a websocket connection from
frontend to backend. Luckily, we can use built-in WebSocket in our frontend project. First create an api folder under
your src and qwebchannel under that. Then populate the folder with given helpers in the repository examples (Just
copy and paste the content into your project). Addition to those, you can create controllers and models directories
as well, for nicely formatted structure.

AppName
backend
controllers
__init__.py
HelloWorldController.py

models
__init__.py

frontend
node_modules
public
src
api
controllers
models
qwebchannel
index.d.ts
index.js

main.ts
vite-env-d.ts

index.html
package.json
tsconfig.json
.gitignore
main.py
README.md
LICENSE
.gitignore

14 Chapter 2. Controller Utilities

Python Web Channel , Release 1.9

2.4.11 Step 9: Add QWebChannel javascript interface

api/qwebchannel/index.js is the official QWebChannel javascript interface. However, it is different than the orig-
inal (index_org.js) one. It has been updated to support async/await pattern instead of old-school callback style
usage. Addition to that a typescript definition has been attached as well, index.d.ts.

2.4.12 Step 10: Websocket Helper

Now, create a class to handle the websocket communication boiler-plate. You can use given BaseAPI.ts and
CommandAPI.ts from the repository. The important part here is the implementation of onChannelReady callback
located under CommandAPI.ts. This is the part where you access your object exposed from backend . As you guess,
this access will be storing the reference to that object inside our API object, so that we can use it whenever we need it.
Update the CommandAPI.ts for learning purposed debugging

// Inside CommadAPI.ts copied from repository
export class CommandAPI extends BaseAPI {
public constructor() {
super("ws://localhost:9000", "Command Transfer Service");

}

// Update this part to see the channel content.
async onChannelReady(channel: QWebChannel): Promise<void> {
console.log(channel)

}
}

Then add connection request into your main.ts

// main.ts
// import API
import {API} from "./api/CommandAPI.ts";

// Try to connect
API.connect().then(() => {
if (API.isConnected()) {
console.log("Successfully connected to backend")

}
}).catch((error) => {
console.log(error)

})

// Add a simple UI
document.querySelector<HTMLDivElement>('#app')!.innerHTML = `
<div>
<input id="input">
<button id="button">Say Hi</button>

</div>
`

const input = document.querySelector<HTMLInputElement>('#input');
const button = document.querySelector<HTMLButtonElement>('#button');

(continues on next page)

2.4. Usage Setup : 15

Python Web Channel , Release 1.9

(continued from previous page)

button?.addEventListener('click', () => {
console.log(input?.value)

})

2.4.13 Step 11: Run the projects

Now, run the backend project, and run the frontend project. If everything is correct, you should see an output from
backend terminal:

[INFO] - Command Transfer Service: 'Command Transfer Service' is active at PORT=9000
[INFO] - Command Transfer Service: New Connection (Active client count: 1)

and something similar from frontend browser console.

QWebChannel {...}
Successfully connected to backend

When you expand the QWebChannel object on the console, you should see an objects and HelloWorldController
inside it. If this is the case, you have successfully connected your python backend to your frontend

2.4.14 Step 12: Use it

Let’s use it and let our backend say hello to frontend. Just update your code as it should be:

Update CommandAPI.ts

export class CommandAPI extends BaseAPI {
// Add an attribute for our API object
HelloWorldController!: any;

public constructor() {
super("ws://localhost:9000", "Command Transfer Service");

}

async onChannelReady(channel: QWebChannel): Promise<void> {
// Initialize it by the object located inside the QWebChannel
this.HelloWorldController = channel.objects.HelloWorldController;

}
}

Update main.ts

button?.addEventListener('click', async () => {
// Call say hello with input value taken from input text box
const response = await API.HelloWorldController.sayHello(input?.value)
if (response.error) {
// if an error occurred, display it
console.log(response.error)

(continues on next page)

16 Chapter 2. Controller Utilities

Python Web Channel , Release 1.9

(continued from previous page)

return
}

if (response.success) {
// if a success message has been received, display it
alert(response.success)
return

}

if (response.data) {
// if an extra data has been received, display it
alert(JSON.stringify(response.data))
return

}
})

Refresh your web page, and click the button. You should see an alert message saying Hello from
'HelloWorldController.sayHello' to my friend <your input value>

2.4.15 Step 13: Type hinting

Everything is ready to go. The ONLY MISSING part is type hint in our frontend, because we don’t have any type
defintion for our controller, HelloWorldController. Type script generator given by pywebchannel comes in play
at this moment.

• Step 1: Copy ts_generator.py and Paste it into your backend root folder, same level with your main.py.

• Step 2: Check the folder paths written in ts_generator.py script

• Step 3: Run it in separate terminal.

python ts_generator.py

• Step 4: You will see that the frontend controller folder will be populated with an auto generated Type-script
interface, api/controllers/HelloWorldController.ts

• Step 5: Since it needs to use Response interface for type-hinting for return values, it needs to be located inside
api/models directory, which is not there yet. Please copy it from the repoository. And also copy the Signal
interface as well, which is going to be necessary when you use signals.

• Step 6: Now return back to your button.click listener implementation in main.ts. You will see that the
function, sayHello(...), the return value response all are taking advantage of type-hinting.

2.4. Usage Setup : 17

Python Web Channel , Release 1.9

2.4.16 The last step: Finalize your UI and serve it

When you complete your UI, you can serve it inside your backend project. For that purpose, you have a couple of
options as usual.

First of all, you need to build your UI project. Inside your UI project, run:

npm run build

This is going to create a dist folder inside your UI project, frontend/dist. Copy dist folder into your backend
project, and rename it with a meaningful name, such as app_ui.

Since it is a javascript based web project, opening the html file is not enough. The javascript functionalities will
not be available. For that purpose, you need to serve it through a web server.

You can use the given HttpServer class inside pywebchannel for that purpose. It is a simple http server, which
serves the given folder. Then you can access your UI through a browser, or even better, you can use QWebEngineView
to display it

Please update your main.py file as follows. Feel free to use all the features you deserve from QWebEngineView:

main.py
import sys

from PySide6.QtCore import QUrl
from PySide6.QtWebEngineCore import QWebEngineSettings
from PySide6.QtWebEngineWidgets import QWebEngineView
from PySide6.QtWidgets import QApplication

from controllers.HelloWorldController import HelloWorldController
from pywebchannel import WebChannelService, HttpServer

if __name__ == "__main__":
app = QApplication(sys.argv)

Create a WebChannelService with a desired serviceName and the parent QObject
commandTransferService = WebChannelService("Command Transfer Service", app)
Start the service with a desired port number, 9000 in this example
commandTransferService.start(9000)

Create hello world controller object
hwController = HelloWorldController(app)
Register controller for the communication service
commandTransferService.registerController(hwController)

Create http server and start it
UI_PORT = 12000
httpServer = HttpServer("app_ui", UI_PORT, app)
httpServer.start()

Website on QTGui
view = QWebEngineView()
view.settings().setAttribute(QWebEngineSettings.WebAttribute.PluginsEnabled, True)
view.settings().setAttribute(QWebEngineSettings.WebAttribute.DnsPrefetchEnabled,␣

→˓True)
view.load(QUrl(f"http://localhost:{UI_PORT}/"))

(continues on next page)

18 Chapter 2. Controller Utilities

Python Web Channel , Release 1.9

(continued from previous page)

view.setWindowTitle("Hello World App")
view.show()

app.exec()

This will spin a web server at port 12000, and serve the app_ui folder, and creates a QWebEngineView to display your
UI. You can also access your UI through a browser by typing http://localhost:12000 into the address bar. This
could be helpful, if you observe any weird behaviour on your UI. The console on the browser could be helpful to debug
the problem.

2.5 Congratulations!!!

You’ve successfully linked your Python backend to the frontend, introducing a tool capable of dynamically generating
TypeScript interfaces by monitoring backend changes. This tool ensures that your frontend remains synchronized with
backend updates, streamlining the development process.

As long as the tool is active, it automatically updates scripts as you modify the backend, maintaining consistency
between the two worlds. Now, you can explore additional examples and delve into the self-explanatory API.

Consider the following steps as you continue to enhance your development process:

1. Documentation and Usage Guidelines:

• Develop comprehensive documentation to guide users on effectively utilizing the tool.

• Provide clear instructions on structuring the backend code to optimize the automatic generation of TypeScript
interfaces.

2. Expand Script Generation:

• Explore opportunities to extend the tool’s capabilities beyond TypeScript interfaces, such as generating API
documentation or other relevant artifacts based on backend modifications.

3. User Interface for the Tool:

• Enhance accessibility by creating a user interface for the tool, catering to developers who may prefer graphical
interfaces over command-line tools.

• Implement features like configurable options and settings to further customize the tool’s behavior.

2.6 How to Contribute

If you want to contribute to this project, you are more than welcome. Here are some ways you can help:

• Report any bugs or issues you find.

• Suggest new features or improvements.

• Submit pull requests with your code changes.

• Share your feedback or suggestions.

2.5. Congratulations!!! 19

Python Web Channel , Release 1.9

2.7 License

This project is licensed under the MIT License. See the LICENSE file for details.

2.8 Credits

This project was inspired by the following sources:

• QWebChannel - a Qt module that enables seamless integration of C++ and HTML/JavaScript.

• PySide6 - a Python binding of the cross-platform GUI toolkit Qt.

• TypeScript - a superset of JavaScript that adds optional types.

2.9 API

2.9.1 Controller

pywebchannel.Controller.Action(notify: Notify = None)
A decorator that converts a Python function into a Qt slot. The notify argument is used to emit after the function
is executed. Defaults to None. If it is specified, a signal with the given name will be created and attached into
the class. You don’t need to create that signal yourself. The signal will be emitted with the result of the function.
EmitBy is used to specify the source of the notification. If it is set to EmitBy.Auto, the notification will be emitted
automatically after the function is executed. If it is set to EmitBy.User, the notification will be emitted only if
the function explicitly emits it.

Parameters
notify (Notify, optional) – A Notify object that specifies the name and arguments of a
notification signal

Returns
A wrapper function that is a Qt slot with the same arguments and return type as the original
function. The slot also handles serialization and deserialization of inputs and outputs, exception
handling,and optionally emits a notification signal with the result.

References

https://doc.qt.io/qtforpython-6/tutorials/basictutorial/signals_and_slots.html

See also:

Signal, Property

class pywebchannel.Controller.Controller(controllerName: str, parent: QObject | None = None)
Bases: QObject

A base class for controllers that provides common functionality.

_controllerName

A private instance attribute that stores the name of the controller.

20 Chapter 2. Controller Utilities

https://github.com/cihanuyanik/pywebchannel/blob/main/LICENSE
https://doc.qt.io/qt-5/qwebchannel.html
https://www.qt.io/qt-for-python
https://www.typescriptlang.org/
https://doc.qt.io/qtforpython-6/tutorials/basictutorial/signals_and_slots.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Web Channel , Release 1.9

cleanup()→ None
Performs any necessary cleanup actions before the controller is destroyed.

This method can be overridden by subclasses to implement their own cleanup logic.

name()→ str
Returns the name of the controller.

Returns
A string that represents the name of the controller.

staticMetaObject = PySide6.QtCore.QMetaObject("Controller" inherits "QObject":)

class pywebchannel.Controller.Convert

Bases: object

This class provides some utility methods to convert data types between Python, Qt, and web formats.

static from_py_to_qt(argDict: Dict[str, type])→ Tuple[List[str], List[type]]

Converts a dictionary of argument names and types from Python to Qt format.

• Primitive types are kept as they are.

• List types are converted to list type.

• Pydantic types are converted to dict type.

• Other types are converted to dict type.

Returns
Tuple[List[str], List[type]] - argument names and argument types.

static from_py_to_web(arg)→ Any
Converts a Python format argument to a web format argument.

Returns

• Primitive types are kept as they are.

• List types are recursively converted using the inner type.

• Pydantic types are converted to a dictionary using the dict() method.

• Other types are converted to a dictionary using the dict() method.

static from_py_to_web_response(result)→ Dict[str, Any]

Converts a Python format result to a web format response.

• String types are wrapped in a Response object with success attribute.

• Response types are converted to a dictionary using the dict() method.

• Other types are wrapped in a Response object with data attribute.

Returns
Dict[str, Any] - a dictionary that represents the response.

static from_web_to_py(arg, paramType)→ Any
Converts a web format argument to a Python format argument according to the given parameter type.

Returns

2.9. API 21

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Python Web Channel , Release 1.9

• Primitive types are kept as they are.

• List types are recursively converted using the inner type.

• Pydantic types are instantiated using the argument as a keyword dictionary.

• Other types are kept as they are.

class pywebchannel.Controller.EmitBy

Bases: object

A class to represent the source of a notification.

Auto = 0

User = 1

class pywebchannel.Controller.Helper

Bases: object

static infer_caller_info(stack: List[FrameInfo])→ Tuple[str, str]
A method that infers the name of the controller and the variable that called this method from the stack trace.

Parameters
stack (List[inspect.FrameInfo]) – A list of frame information objects representing the
current call stack.

Returns
A tuple of two strings: the name of the controller and the name of the variable that called this
method. If the variable name cannot be inferred, an empty string is returned as the second
element of the tuple.

Return type
Tuple[str, str]

class pywebchannel.Controller.Notify(arguments: Dict[str, type] | List[type], name: str = None, emitBy:
EmitBy = 0)

Bases: object

A class to represent a notification object.

name

The name of the notification.

Type
str

arguments

A dictionary of the arguments that the notification expects, with the argument

Type
Dict[str, type]

name as the key and the argument type as the value.

emitBy

The source of the notification, either EmitBy.Auto or EmitBy.User.

Type
EmitBy

The default value is EmitBy.Auto.

22 Chapter 2. Controller Utilities

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/inspect.html#inspect.FrameInfo
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/inspect.html#inspect.FrameInfo
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type

Python Web Channel , Release 1.9

pywebchannel.Controller.Property(p_type: type, init_val=None, get_f=None, set_f=None)→ Property
A function that creates a Qt property and a corresponding signal. The function is responsible for creating the
backend variable, getter and setter functions, and the signal object related with the property.

Parameters

• p_type (type) – The type of the property value.

• init_val – The initial value of the property. Defaults to None

• get_f (function, optional) – A custom getter function for the property. Defaults to
None.

• set_f (function, optional) – A custom setter function for the property. Defaults to
None.

Returns
The prop which is a QtCore.Property object.

Raises
Exception – If the property name cannot be inferred from the caller information

References

https://doc.qt.io/qtforpython-6/PySide6/QtCore/Property.html

See also:

Signal, Action

class pywebchannel.Controller.Response(*, success: str | None = None, error: str | None = None, data:
Any | None = None)

Bases: BaseModel

A Pydantic model that represents the outcome of some operation.

data: Any | None

Any Python object that stores the result of the operation. It can be of any type, such as a dict, a list, a tuple,
a string, a number, etc. Pydantic will not perform any validation or conversion on this field.

error: str | None

A string that provides an error message if something went wrong during the operation. It can be None or
any string value. For example, “Invalid input”, “Connection timeout”, “Database error”etc.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'data':
FieldInfo(annotation=Union[Any, NoneType], required=False), 'error':
FieldInfo(annotation=Union[str, NoneType], required=False), 'success':
FieldInfo(annotation=Union[str, NoneType], required=False)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

success: str | None

A string that indicates whether the operation was successful or not. It can be None or any string value. For
example, “yes”, “no”, “ok”, “error”, etc.

2.9. API 23

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Exception
https://doc.qt.io/qtforpython-6/PySide6/QtCore/Property.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Python Web Channel , Release 1.9

pywebchannel.Controller.Signal(args: Dict[str, type] | List[type], controllerName: str = None, signalName:
str = None)→ Signal

A function that creates a Qt signal with the given arguments by making necessary type conversions to keep Qt
and serialization process happy.

Parameters

• args (Dict[str, type] or List[type]) – A dictionary that maps the names and types
of the signal arguments.

• controllerName (str, optional) – The name of the controller that defines the signal.
Defaults to None.

• signalName (str, optional) – The name of the signal. Defaults to None.

Returns
A QtCore.Signal object with the specified arguments, name, and arguments names.

Raises
Exception – If the controller name or signal name cannot be inferred from the caller information,
or if the signal name is empty.

References

https://doc.qt.io/qtforpython-6/PySide6/QtCore/Signal.html

See also:

Property, Action

class pywebchannel.Controller.Type

Bases: object

This class provides some utility methods to check the type of variable.

is_primitive(var_type

type) -> bool: Returns True if the given type is a primitive type, False otherwise.

is_list(var_type

type) -> bool: Returns True if the given type is a list type, False otherwise.

is_pydantic(var_type

type) -> bool: Returns True if the given type is a subclass of pydantic.BaseModel, False otherwise.

static is_list(var_type: type)

static is_primitive(var_type: type)

static is_pydantic(var_type: type)

primitives = (<class 'bool'>, <class 'str'>, <class 'int'>, <class 'float'>, <class
'NoneType'>)

A tuple of primitive types in Python, such as bool, str, int, float, and NoneType.

24 Chapter 2. Controller Utilities

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://doc.qt.io/qtforpython-6/PySide6/QtCore/Signal.html
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

Python Web Channel , Release 1.9

2.9.2 GeneratorWatcher

class pywebchannel.GeneratorWatcher.GeneratorWatcher(parent: QObject | None = None)
Bases: QFileSystemWatcher

A class that inherits from QFileSystemWatcher and watches for changes in python files.

watchTargetDirMap

A dictionary that maps the source directory to the target directory.

Type
Dict[str, str]

addDirectory(dirPathToWatch: str, dirTargetPath: str)
A method that adds a directory to the watch list.

Parameters

• dirPathToWatch (str) – The path of the directory to watch.

• dirTargetPath (str) – The path of the target directory to generate typescript files.

addFile(filePath: str)
A method that adds a file to the watch list.

Parameters
filePath (str) – The path of the file to watch.

getOutputFilePath(filePath)
Get the output file path for the TypeScript file.

Parameters
filePath (str) – The input file path for the Python file.

Returns
The output file path for the TypeScript file.

Return type
str

onDirectoryChanged(dirPath: str)
The slot that is triggered when a directory is changed.

Parameters
dirPath (str) – The path of the changed directory.

onFileChanged(filePath: str)
The slot that is triggered when a file is changed.

Parameters
filePath (str) – The path of the changed file.

staticMetaObject = PySide6.QtCore.QMetaObject("GeneratorWatcher" inherits
"QFileSystemWatcher": Methods: #9 type=Slot,
signature=onDirectoryChanged(QString), parameters=QString #10 type=Slot,
signature=onFileChanged(QString), parameters=QString)

2.9. API 25

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python Web Channel , Release 1.9

2.9.3 WebChannelService

class pywebchannel.WebChannelService.WebChannelService(serviceName: str, parent: QObject | None =
None)

Bases: QObject

A class that inherits from QObject and provides a web channel service using QWebSocketServer and QWe-
bChannel.

websocketServer

The QWebSocketServer object that provides the WebSocket server.

Type
QWebSocketServer

port

The port number for the WebSocket server.

Type
int

serviceName

The name of the web channel service.

Type
str

clientWrapper

The WebSocketClientWrapper object that handles the WebSocket connections from the server.

Type
WebSocketClientWrapper

channel

The QWebChannel object that manages the communication between the server and the clients.

Type
QWebChannel

activeClientCount

The number of active WebSocket clients connected to the server.

Type
int

isOnline()→ bool
Checks if the web channel service is online by checking the status of the WebSocket server.

Returns
True if the web channel service is online, False otherwise.

Return type
bool

onClientConnected(transport: WebSocketTransport)→ None
Connects the web channel to the WebSocket transport and increments the active client count.

This slot is invoked when the clientWrapper object emits the clientConnected signal.

26 Chapter 2. Controller Utilities

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Python Web Channel , Release 1.9

Parameters
transport (WebSocketTransport) – The WebSocketTransport object that represents the
WebSocket connection.

onClientDisconnected(transport: WebSocketTransport)→ None
Decrements the active client count and cleans up the controller objects if the active client count is zero.

This slot is invoked when the clientWrapper object emits the clientDisconnected signal.

Parameters
transport (WebSocketTransport) – The WebSocketTransport object that represents the
WebSocket connection.

onClosed()→ None
Logs the information of closing the web channel service.

This slot is invoked when the websocketServer object emits the closed signal.

registerController(controller: Controller)→ None
Registers a controller object to the web channel using the channel attribute.

Parameters
controller (Controller) – The controller object to be registered.

start(port: int)→ bool
Starts the web channel service by creating and listening to a WebSocket server at the given port.

Parameters
port (int) – The port number for the WebSocket server.

Returns
True if the web channel service is started successfully, False otherwise.

Return type
bool

staticMetaObject = PySide6.QtCore.QMetaObject("WebChannelService" inherits
"QObject": Methods: #5 type=Slot, signature=onClosed() #6 type=Slot,
signature=onClientConnected(QWebChannelAbstractTransport*),
parameters=QWebChannelAbstractTransport* #7 type=Slot,
signature=onClientDisconnected(QWebChannelAbstractTransport*),
parameters=QWebChannelAbstractTransport*)

stop()→ None
Stops the web channel service by closing and deleting the WebSocket server.

class pywebchannel.WebChannelService.WebSocketClientWrapper(server: QWebSocketServer, parent:
QObject | None = None)

Bases: QObject

A class that inherits from QObject and handles the WebSocket connections from a QWebSocketServer.

server

The QWebSocketServer object that listens for WebSocket connections.

Type
QWebSocketServer

clientConnected

The signal that is emitted when a new WebSocket connection is established.

2.9. API 27

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Web Channel , Release 1.9

clientDisconnected

The signal that is emitted when an existing WebSocket connection is closed.

handleNewConnection()→ None
Creates a WebSocketTransport object for the next pending connection from the server and emits the client-
Connected signal.

This slot is invoked when the server object emits the newConnection signal.

staticMetaObject = PySide6.QtCore.QMetaObject("WebSocketClientWrapper" inherits
"QObject": Methods: #5 type=Signal,
signature=clientConnected(QWebChannelAbstractTransport*),
parameters=QWebChannelAbstractTransport* #6 type=Signal,
signature=clientDisconnected(QWebChannelAbstractTransport*),
parameters=QWebChannelAbstractTransport* #7 type=Slot,
signature=handleNewConnection())

class pywebchannel.WebChannelService.WebSocketTransport(socket: QWebSocket)
Bases: QWebChannelAbstractTransport

A class that inherits from QWebChannelAbstractTransport and communicates with a QWebSocket.

socket

The QWebSocket object that handles the WebSocket connection.

Type
QWebSocket

disconnected

The signal that is emitted when the socket is disconnected.

onSocketDisconnected()→ None
Emits the disconnected signal with the self object and deletes the self object and the socket object.

This slot is invoked when the socket object emits the disconnected signal.

sendMessage(message)→ None
Sends a message to the WebSocket using the socket object.

The message is converted to a QJsonDocument and then to a compact JSON string.

Parameters
message – The message to be sent.

staticMetaObject = PySide6.QtCore.QMetaObject("WebSocketTransport" inherits
"QWebChannelAbstractTransport": Methods: #7 type=Signal,
signature=disconnected(QWebChannelAbstractTransport*),
parameters=QWebChannelAbstractTransport* #8 type=Slot,
signature=onSocketDisconnected() #9 type=Slot,
signature=textMessageReceived(QString), parameters=QString)

textMessageReceived(messageData: str)→ None
Receives a text message from the WebSocket using the socket object and emits the messageReceived signal.

The text message is parsed as a QJsonDocument and then as a QJsonObject. If there is any error in parsing,
the error is logged using the Logger object.

This slot is invoked when the socket object emits the textMessageReceived signal.

Parameters
messageData (str) – The text message received from the WebSocket.

28 Chapter 2. Controller Utilities

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Python Web Channel , Release 1.9

2.9.4 HttpServer

class pywebchannel.HttpServer.HttpServer(serverDir: str, port: int, parent=None)
Bases: QObject

A class that inherits from QObject and runs an HTTP server using QProcess.

process

The QProcess object that executes the HTTP server.

Type
QProcess

port

The port number for the HTTP server.

Type
int

serverDir

The directory path for the HTTP server.

Type
str

onReadyReadStandardError()→ None
Reads the standard error from the QProcess object and logs it using the Logger object.

This slot is invoked when the QProcess object emits the readyReadStandardError signal.

onReadyReadStandardOutput()→ None
Reads the standard output from the QProcess object and logs it using the Logger object.

This slot is invoked when the QProcess object emits the readyReadStandardOutput signal.

start()→ None
Starts the HTTP server using the QProcess object.

The QProcess object executes the command “python -m http.server port –directory serverDir”.

staticMetaObject = PySide6.QtCore.QMetaObject("HttpServer" inherits "QObject":
Methods: #5 type=Slot, signature=stop() #6 type=Slot,
signature=onReadyReadStandardOutput() #7 type=Slot,
signature=onReadyReadStandardError())

stop()→ None
Stops the HTTP server by killing the QProcess object.

Logs the information of stopping the HTTP server using the Logger object.

2.9. API 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python Web Channel , Release 1.9

2.9.5 CodeAnalyzer

class pywebchannel.CodeAnalyzer.CodeAnalyzer(MetaClass)
Bases: object

A class that analyzes the code of a given class and determines its type and acceptability.

MetaClass

The class object to be analyzed.

Type
type

_classType

The type of the class object, one of the supported types.

Type
str

_isAcceptable

A flag indicating whether the class object is acceptable for analysis or not.

Type
bool

classType()

Returns the type of the class object, one of the supported types.

Returns
The type of the class object, or an empty string if not acceptable.

Return type
str

isAcceptable()

Returns whether the class object is acceptable for analysis or not.

Returns
True if the class object is acceptable, False otherwise.

Return type
bool

run()

Runs the analysis on the class object and returns an interface object.

Returns
The interface object corresponding to the class object’s type, or None if not acceptable.

class pywebchannel.CodeAnalyzer.ControllerInterface(MetaClass)
Bases: Interface

A class that represents the interface of a controller class.

A controller class is a subclass of QObject that defines properties, signals, and slots that can be used to commu-
nicate with other classes or components.

props

The properties of the controller class.

Type
list of Property

30 Chapter 2. Controller Utilities

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

Python Web Channel , Release 1.9

signals

The signals of the controller class.

Type
list of Signal

slots

The slots of the controller class.

Type
list of Slot

classType()

Returns the type of the interface, which is SupportedTypes.Controller.

Returns
The type of the interface.

Return type
str

dependencies()

Returns the list of dependencies of the interface.

Dependencies are the types that are used by the properties, signals, and slots of the interface.

Returns
The list of dependencies, without duplicates.

Return type
list[str]

class pywebchannel.CodeAnalyzer.Interface(MetaClass)
Bases: object

A base class that represents the interface of a class.

An interface is a set of properties, signals, and slots that define the communication and functionality of a class.

MetaClass

The metaclass of the class that implements the interface.

Type
type

name

The name of the interface.

Type
str

objectDict

The dictionary of the meta class’s attributes and methods.

Type
dict

staticMetaObject

The static meta-object of the meta class.

Type
QMetaObject

2.9. API 31

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Python Web Channel , Release 1.9

props

The properties of the interface.

Type
list of Property

signals

The signals of the interface.

Type
list of Signal

slots

The slots of the interface.

Type
list of Slot

classType()

Returns the type of the interface, which is “Interface”.

Returns
The type of the interface.

Return type
str

dependencies()

Returns the list of dependencies of the interface.

Dependencies are the types that are used by the properties, signals, and slots of the interface.

Returns
The list of dependencies, without duplicates.

class pywebchannel.CodeAnalyzer.ModelInterface(MetaClass)
Bases: Interface

A class that represents the interface of a model class.

props

The properties of the model class.

Type
list of Property

classType()

Returns the type of the interface, which is SupportedTypes.Model.

Returns
The type of the interface.

Return type
str

dependencies()

Returns the list of dependencies of the interface.

Dependencies are the types that are used by the properties of the interface.

Returns
The list of dependencies, without duplicates.

32 Chapter 2. Controller Utilities

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Python Web Channel , Release 1.9

Return type
list[str]

class pywebchannel.CodeAnalyzer.Parameter(name: str, typeStr: str)
Bases: object

A class to represent a parameter in TypeScript.

name

The name of the parameter.

Type
str

type

The type of the parameter in TypeScript syntax.

Type
str

code

The code representation of the parameter.

Type
str

convertCode()→ None
Generate the code representation of the parameter.

convertType()→ None
Convert the type attribute to a TypeScript compatible type.

dependencies()→ list[str]
Return a list of the dependencies of the parameter type.

Returns
A list of the types that the parameter type depends on, without brackets.

Return type
list[str]

class pywebchannel.CodeAnalyzer.Property(name: str, typeStr: str)
Bases: object

convertCode()→ None
Generate the code attribute for the property.

convertType()→ None
Convert the type attribute to a TypeScript compatible type.

dependencies()

Return the dependencies of the property.

Returns
A list of the types that the property depends on.

Return type
list

class pywebchannel.CodeAnalyzer.Return(typeStr: str)
Bases: object

2.9. API 33

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Python Web Channel , Release 1.9

convertCode()→ None
Generate the code attribute for the return type.

convertType()→ None
Convert the type attribute to a TypeScript compatible type.

dependencies()

Return the dependencies of the return type.

Returns
A list of the types that the return type depends on.

Return type
list

class pywebchannel.CodeAnalyzer.Signal(name: str, parameters: list[Parameter], returnType: Return)
Bases: object

convertCode()→ None
Generate the code attribute for the signal.

convertType()→ None
Convert the type attributes of the parameters and the returnType to TypeScript compatible types.

dependencies()

Return the dependencies of the signal.

Returns
A list of the types that the signal depends on.

Return type
list

class pywebchannel.CodeAnalyzer.Slot(name: str, parameters: list[Parameter], returnType: Return)
Bases: object

A class to represent a slot of a TypeScript class.

name

The name of the slot.

Type
str

parameters

A list of Parameter objects that represent the parameters of the slot function.

Type
list[Parameter]

returnType

A Return object that represents the return type of the slot function.

Type
Return

code

The code for the slot declaration in TypeScript.

Type
str

34 Chapter 2. Controller Utilities

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Python Web Channel , Release 1.9

convertCode()→ None
Generate the code attribute for the slot.

convertType()→ None
Convert the type attributes of the parameters and the returnType to TypeScript compatible types.

dependencies()

Return the dependencies of the slot.

Returns
A list of the types that the slot depends on.

Return type
list

class pywebchannel.CodeAnalyzer.SupportedTypes(value, names=None, *values, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Controller = 'Controller'

Model = 'BaseModel'

2.9.6 Utils

class pywebchannel.Utils.Generator

Bases: object

A class to generate TypeScript code for interfaces.

static header()

Generate the header for the TypeScript file.

Returns
A list of strings that represent the header lines.

Return type
list

static imports(deps)
Generate the import statements for the TypeScript file.

Parameters
deps (list) – A list of strings that represent the dependencies of the interfaces.

Returns
A list of strings that represent the import statements.

Return type
list

static interface(name: str, interface)
Generate the interface declaration for the TypeScript file.

Parameters

• name (str) – The name of the interface.

• interface (Interface) – An Interface object that represents the interface.

2.9. API 35

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/enum.html#enum.StrEnum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python Web Channel , Release 1.9

Returns
A list of strings that represent the interface declaration.

Return type
list

class pywebchannel.Utils.Logger

Bases: object

A class to log messages with different colors and levels.

static error(message, sender='')→ None
Log an error message with red color and optional sender name.

Parameters

• message (str) – The message to log.

• sender (str) – The name of the sender of the message. Default to “”.

Returns
None

static info(message, sender='')→ None
Log an info message with green color and optional sender name.

Parameters

• message (str) – The message to log.

• sender (str) – The name of the sender of the message. Default to “”.

Returns
None

static status(message, sender='', override=True)→ None
Log a status message with blue color and optional override flag.

Parameters

• message (str) – The message to log.

• override (bool) – A flag to indicate whether to override the previous status message or
not. Default to True.

Returns
None

static warning(message, sender='')→ None
Log a warning message with yellow color and optional sender name.

Parameters

• message (str) – The message to log.

• sender (str) – The name of the sender of the message. Default to “”.

Returns
None

class pywebchannel.Utils.Utils

Bases: object

A class that provides some utility methods for working with types and signatures.

36 Chapter 2. Controller Utilities

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Python Web Channel , Release 1.9

VARIABLE_TYPE_MAP = {'QString': 'string', 'QVariantList': 'any[]', 'QVariantMap':
'any', 'Response': 'Response', 'any': 'any', 'bool': 'boolean', 'dict': 'any',
'double': 'number', 'float': 'number', 'int': 'number', 'list': 'any[]', 'str':
'string', 'void': 'void'}

static convertType(text)→ str
Converts a Python type to a TypeScript type using the VARIABLE_TYPE_MAP.

Parameters
text – A string that represents the Python type to be converted.

Returns
A string that represents the TypeScript type, with the format ‘<type>[]’ for list types.

static getInheritanceTree(T: type)
Returns a dictionary that represents the inheritance tree of a given type.

Parameters
T – A type object that represents the subclass.

Returns: A dictionary that maps the names of the base classes to their type objects, starting from the
subclass to the object class.

static isList(text: str)→ tuple[bool, str]
Checks if a string representation of a type is a list type.

Parameters
text – A string that represents the type to be checked.

Returns
A tuple of a boolean value and a string prefix. The boolean value is True if the type is a list
type, and False otherwise. The string prefix is either list[or List[depending on the case of
the type, or an empty string if the type is not a list type.

static isTypescriptPrimitive(text: str)→ bool
Checks if a string representation of a type is a TypeScript primitive type.

Parameters
text – A string that represents the type to be checked.

Returns
A boolean value that is True if the type is a TypeScript primitive type, and False otherwise.

static parseWithInspect(f)
Parses the signature of a function using the inspect module.

Parameters
f (function) – The function to be parsed.

Returns
The names of the parameters of the function. paramTypes (list of str): The types of the
parameters of the function, or empty strings if not annotated. returnType (str): The type of
the return value of the function, or “Response” if not annotated.

Return type
paramNames (list of str)

pp = <pprint.PrettyPrinter object>

2.9. API 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Python Web Channel , Release 1.9

static simplyVariableType(text: str)→ str
Simplifies a str representation of a type by removing whitespace, quotation marks, and package information.

Parameters
text – A string that represents the type to be simplified.

Returns
A simplified string that represents the type, with the format ‘list[<type>]’ for list types.

static type_to_string(t: type)
Returns a string representation of a given type.

Parameters
t – A type object that represents the type to be converted.

Returns
A string that represents the type, with the format ‘list[<type>]’ for list types.

38 Chapter 2. Controller Utilities

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type

PYTHON MODULE INDEX

p
pywebchannel.CodeAnalyzer, 30
pywebchannel.Controller, 20
pywebchannel.GeneratorWatcher, 25
pywebchannel.HttpServer, 29
pywebchannel.Utils, 35
pywebchannel.WebChannelService, 26

39

Python Web Channel , Release 1.9

40 Python Module Index

INDEX

Symbols
_classType (pywebchan-

nel.CodeAnalyzer.CodeAnalyzer attribute),
30

_controllerName (pywebchannel.Controller.Controller
attribute), 20

_isAcceptable (pywebchan-
nel.CodeAnalyzer.CodeAnalyzer attribute),
30

A
Action() (in module pywebchannel.Controller), 20
activeClientCount (pywebchan-

nel.WebChannelService.WebChannelService
attribute), 26

addDirectory() (pywebchan-
nel.GeneratorWatcher.GeneratorWatcher
method), 25

addFile() (pywebchan-
nel.GeneratorWatcher.GeneratorWatcher
method), 25

arguments (pywebchannel.Controller.Notify attribute),
22

Auto (pywebchannel.Controller.EmitBy attribute), 22

C
channel (pywebchannel.WebChannelService.WebChannelService

attribute), 26
classType() (pywebchan-

nel.CodeAnalyzer.CodeAnalyzer method),
30

classType() (pywebchan-
nel.CodeAnalyzer.ControllerInterface method),
31

classType() (pywebchannel.CodeAnalyzer.Interface
method), 32

classType() (pywebchan-
nel.CodeAnalyzer.ModelInterface method),
32

cleanup() (pywebchannel.Controller.Controller
method), 20

clientConnected (pywebchan-
nel.WebChannelService.WebSocketClientWrapper
attribute), 27

clientDisconnected (pywebchan-
nel.WebChannelService.WebSocketClientWrapper
attribute), 27

clientWrapper (pywebchan-
nel.WebChannelService.WebChannelService
attribute), 26

code (pywebchannel.CodeAnalyzer.Parameter attribute),
33

code (pywebchannel.CodeAnalyzer.Slot attribute), 34
CodeAnalyzer (class in pywebchannel.CodeAnalyzer),

30
Controller (class in pywebchannel.Controller), 20
Controller (pywebchan-

nel.CodeAnalyzer.SupportedTypes attribute),
35

ControllerInterface (class in pywebchan-
nel.CodeAnalyzer), 30

Convert (class in pywebchannel.Controller), 21
convertCode() (pywebchan-

nel.CodeAnalyzer.Parameter method), 33
convertCode() (pywebchannel.CodeAnalyzer.Property

method), 33
convertCode() (pywebchannel.CodeAnalyzer.Return

method), 33
convertCode() (pywebchannel.CodeAnalyzer.Signal

method), 34
convertCode() (pywebchannel.CodeAnalyzer.Slot

method), 34
convertType() (pywebchan-

nel.CodeAnalyzer.Parameter method), 33
convertType() (pywebchannel.CodeAnalyzer.Property

method), 33
convertType() (pywebchannel.CodeAnalyzer.Return

method), 34
convertType() (pywebchannel.CodeAnalyzer.Signal

method), 34
convertType() (pywebchannel.CodeAnalyzer.Slot

method), 35
convertType() (pywebchannel.Utils.Utils static

41

Python Web Channel , Release 1.9

method), 37

D
data (pywebchannel.Controller.Response attribute), 23
dependencies() (pywebchan-

nel.CodeAnalyzer.ControllerInterface method),
31

dependencies() (pywebchan-
nel.CodeAnalyzer.Interface method), 32

dependencies() (pywebchan-
nel.CodeAnalyzer.ModelInterface method),
32

dependencies() (pywebchan-
nel.CodeAnalyzer.Parameter method), 33

dependencies() (pywebchan-
nel.CodeAnalyzer.Property method), 33

dependencies() (pywebchannel.CodeAnalyzer.Return
method), 34

dependencies() (pywebchannel.CodeAnalyzer.Signal
method), 34

dependencies() (pywebchannel.CodeAnalyzer.Slot
method), 35

disconnected (pywebchan-
nel.WebChannelService.WebSocketTransport
attribute), 28

E
EmitBy (class in pywebchannel.Controller), 22
emitBy (pywebchannel.Controller.Notify attribute), 22
error (pywebchannel.Controller.Response attribute), 23
error() (pywebchannel.Utils.Logger static method), 36

F
from_py_to_qt() (pywebchannel.Controller.Convert

static method), 21
from_py_to_web() (pywebchannel.Controller.Convert

static method), 21
from_py_to_web_response() (pywebchan-

nel.Controller.Convert static method), 21
from_web_to_py() (pywebchannel.Controller.Convert

static method), 21

G
Generator (class in pywebchannel.Utils), 35
GeneratorWatcher (class in pywebchan-

nel.GeneratorWatcher), 25
getInheritanceTree() (pywebchannel.Utils.Utils

static method), 37
getOutputFilePath() (pywebchan-

nel.GeneratorWatcher.GeneratorWatcher
method), 25

H
handleNewConnection() (pywebchan-

nel.WebChannelService.WebSocketClientWrapper
method), 28

header() (pywebchannel.Utils.Generator static method),
35

Helper (class in pywebchannel.Controller), 22
HttpServer (class in pywebchannel.HttpServer), 29

I
imports() (pywebchannel.Utils.Generator static

method), 35
infer_caller_info() (pywebchan-

nel.Controller.Helper static method), 22
info() (pywebchannel.Utils.Logger static method), 36
Interface (class in pywebchannel.CodeAnalyzer), 31
interface() (pywebchannel.Utils.Generator static

method), 35
is_list() (pywebchannel.Controller.Type static

method), 24
is_primitive() (pywebchannel.Controller.Type static

method), 24
is_pydantic() (pywebchannel.Controller.Type static

method), 24
isAcceptable() (pywebchan-

nel.CodeAnalyzer.CodeAnalyzer method),
30

isList() (pywebchannel.Utils.Utils static method), 37
isOnline() (pywebchan-

nel.WebChannelService.WebChannelService
method), 26

isTypescriptPrimitive() (pywebchannel.Utils.Utils
static method), 37

L
Logger (class in pywebchannel.Utils), 36

M
MetaClass (pywebchannel.CodeAnalyzer.CodeAnalyzer

attribute), 30
MetaClass (pywebchannel.CodeAnalyzer.Interface at-

tribute), 31
Model (pywebchannel.CodeAnalyzer.SupportedTypes at-

tribute), 35
model_config (pywebchannel.Controller.Response at-

tribute), 23
model_fields (pywebchannel.Controller.Response at-

tribute), 23
ModelInterface (class in pywebchan-

nel.CodeAnalyzer), 32
module

pywebchannel.CodeAnalyzer, 30
pywebchannel.Controller, 20

42 Index

Python Web Channel , Release 1.9

pywebchannel.GeneratorWatcher, 25
pywebchannel.HttpServer, 29
pywebchannel.Utils, 35
pywebchannel.WebChannelService, 26

N
name (pywebchannel.CodeAnalyzer.Interface attribute),

31
name (pywebchannel.CodeAnalyzer.Parameter attribute),

33
name (pywebchannel.CodeAnalyzer.Slot attribute), 34
name (pywebchannel.Controller.Notify attribute), 22
name() (pywebchannel.Controller.Controller method),

21
Notify (class in pywebchannel.Controller), 22

O
objectDict (pywebchannel.CodeAnalyzer.Interface at-

tribute), 31
onClientConnected() (pywebchan-

nel.WebChannelService.WebChannelService
method), 26

onClientDisconnected() (pywebchan-
nel.WebChannelService.WebChannelService
method), 27

onClosed() (pywebchan-
nel.WebChannelService.WebChannelService
method), 27

onDirectoryChanged() (pywebchan-
nel.GeneratorWatcher.GeneratorWatcher
method), 25

onFileChanged() (pywebchan-
nel.GeneratorWatcher.GeneratorWatcher
method), 25

onReadyReadStandardError() (pywebchan-
nel.HttpServer.HttpServer method), 29

onReadyReadStandardOutput() (pywebchan-
nel.HttpServer.HttpServer method), 29

onSocketDisconnected() (pywebchan-
nel.WebChannelService.WebSocketTransport
method), 28

P
Parameter (class in pywebchannel.CodeAnalyzer), 33
parameters (pywebchannel.CodeAnalyzer.Slot at-

tribute), 34
parseWithInspect() (pywebchannel.Utils.Utils static

method), 37
port (pywebchannel.HttpServer.HttpServer attribute), 29
port (pywebchannel.WebChannelService.WebChannelService

attribute), 26
pp (pywebchannel.Utils.Utils attribute), 37
primitives (pywebchannel.Controller.Type attribute),

24

process (pywebchannel.HttpServer.HttpServer at-
tribute), 29

Property (class in pywebchannel.CodeAnalyzer), 33
Property() (in module pywebchannel.Controller), 22
props (pywebchannel.CodeAnalyzer.ControllerInterface

attribute), 30
props (pywebchannel.CodeAnalyzer.Interface attribute),

31
props (pywebchannel.CodeAnalyzer.ModelInterface at-

tribute), 32
pywebchannel.CodeAnalyzer

module, 30
pywebchannel.Controller

module, 20
pywebchannel.GeneratorWatcher

module, 25
pywebchannel.HttpServer

module, 29
pywebchannel.Utils

module, 35
pywebchannel.WebChannelService

module, 26

R
registerController() (pywebchan-

nel.WebChannelService.WebChannelService
method), 27

Response (class in pywebchannel.Controller), 23
Return (class in pywebchannel.CodeAnalyzer), 33
returnType (pywebchannel.CodeAnalyzer.Slot at-

tribute), 34
run() (pywebchannel.CodeAnalyzer.CodeAnalyzer

method), 30

S
sendMessage() (pywebchan-

nel.WebChannelService.WebSocketTransport
method), 28

server (pywebchannel.WebChannelService.WebSocketClientWrapper
attribute), 27

serverDir (pywebchannel.HttpServer.HttpServer
attribute), 29

serviceName (pywebchan-
nel.WebChannelService.WebChannelService
attribute), 26

Signal (class in pywebchannel.CodeAnalyzer), 34
Signal() (in module pywebchannel.Controller), 23
signals (pywebchannel.CodeAnalyzer.ControllerInterface

attribute), 31
signals (pywebchannel.CodeAnalyzer.Interface at-

tribute), 32
simplyVariableType() (pywebchannel.Utils.Utils

static method), 37
Slot (class in pywebchannel.CodeAnalyzer), 34

Index 43

Python Web Channel , Release 1.9

slots (pywebchannel.CodeAnalyzer.ControllerInterface
attribute), 31

slots (pywebchannel.CodeAnalyzer.Interface attribute),
32

socket (pywebchannel.WebChannelService.WebSocketTransport
attribute), 28

start() (pywebchannel.HttpServer.HttpServer method),
29

start() (pywebchannel.WebChannelService.WebChannelService
method), 27

staticMetaObject (pywebchan-
nel.CodeAnalyzer.Interface attribute), 31

staticMetaObject (pywebchan-
nel.Controller.Controller attribute), 21

staticMetaObject (pywebchan-
nel.GeneratorWatcher.GeneratorWatcher
attribute), 25

staticMetaObject (pywebchan-
nel.HttpServer.HttpServer attribute), 29

staticMetaObject (pywebchan-
nel.WebChannelService.WebChannelService
attribute), 27

staticMetaObject (pywebchan-
nel.WebChannelService.WebSocketClientWrapper
attribute), 28

staticMetaObject (pywebchan-
nel.WebChannelService.WebSocketTransport
attribute), 28

status() (pywebchannel.Utils.Logger static method), 36
stop() (pywebchannel.HttpServer.HttpServer method),

29
stop() (pywebchannel.WebChannelService.WebChannelService

method), 27
success (pywebchannel.Controller.Response attribute),

23
SupportedTypes (class in pywebchan-

nel.CodeAnalyzer), 35

T
textMessageReceived() (pywebchan-

nel.WebChannelService.WebSocketTransport
method), 28

Type (class in pywebchannel.Controller), 24
type (pywebchannel.CodeAnalyzer.Parameter attribute),

33
type_to_string() (pywebchannel.Utils.Utils static

method), 38

U
User (pywebchannel.Controller.EmitBy attribute), 22
Utils (class in pywebchannel.Utils), 36

V
VARIABLE_TYPE_MAP (pywebchannel.Utils.Utils at-

tribute), 36

W
warning() (pywebchannel.Utils.Logger static method),

36
watchTargetDirMap (pywebchan-

nel.GeneratorWatcher.GeneratorWatcher
attribute), 25

WebChannelService (class in pywebchan-
nel.WebChannelService), 26

WebSocketClientWrapper (class in pywebchan-
nel.WebChannelService), 27

websocketServer (pywebchan-
nel.WebChannelService.WebChannelService
attribute), 26

WebSocketTransport (class in pywebchan-
nel.WebChannelService), 28

44 Index

	Type-Script Generator ⚙️
	Controller Utilities
	What is Python Web Channel❓
	Python Web Channel 🚀
	Type-Script Generator ⚙️
	Controller Utilities

	Why do you need this? 🤔
	Let’s investigate the problems together
	Signals 🚦
	Properties 🧲
	Actions 🕹️
	Okay we almost there 🎰

	Installation 🔃
	Usage Setup ⚙️:
	Definition 1: Business Logic / A python project / Backend 🐍
	Definition 2: User Interface / A web project / Frontend 💻
	Step 1: Create a meaningful directory structure.
	Step 2: Install the library pywebchannel
	Step 3: Create an entry point for your backend.
	Step 4: Create a python package
	Step 5: Create a controller class under your controllers package.
	Step 6: Add functionality
	Step 7: Create UI project
	Step 8: Establish connection
	Step 9: Add QWebChannel javascript interface
	Step 10: Websocket Helper
	Step 11: Run the projects
	Step 12: Use it
	Step 13: Type hinting
	The last step: Finalize your UI and serve it

	Congratulations!!! ✌️🎈🎊
	How to Contribute 🙌
	License 📄
	Credits 🙏
	API 📃
	Controller
	GeneratorWatcher
	WebChannelService
	HttpServer
	CodeAnalyzer
	Utils

	Python Module Index
	Index

